

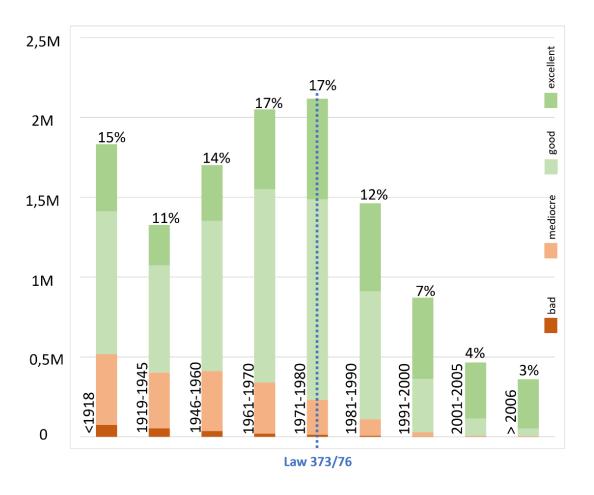
Building Archetypes for Urban Building Energy Modelling

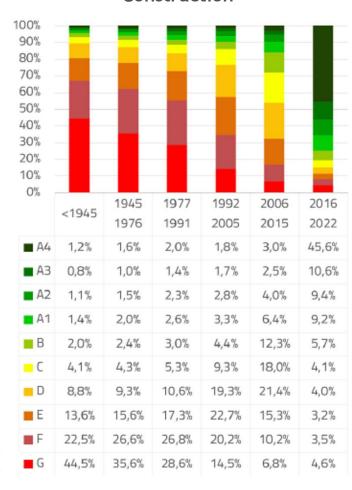
Prof.ssa Ilaria Ballarini

Ing. Matteo Piro

Dott.ssa Mamak P.Tootkaboni

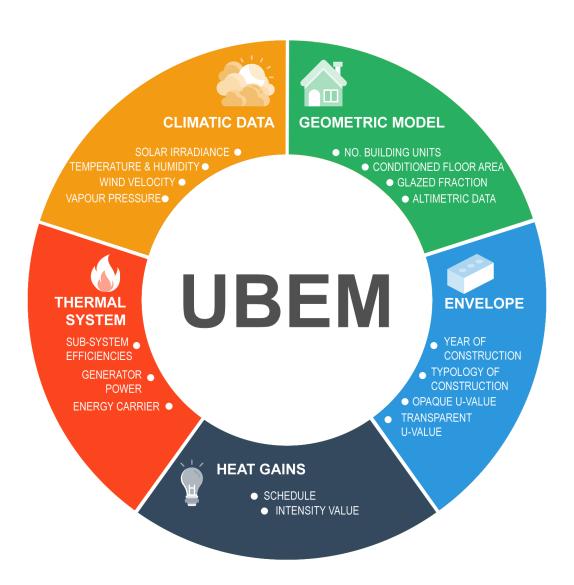
Politecnico di Torino




This project has received funding from the European Union's Horizon 2020 research and innovation programme unde grant agreement No 101033819

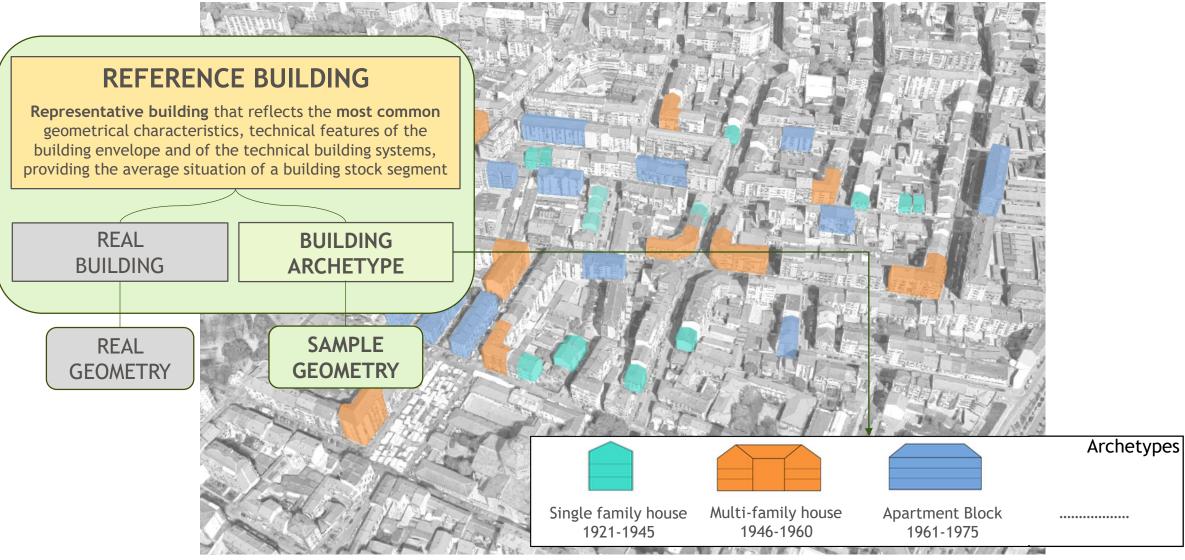
Energy Performance of Italian building stock

Residential Building Stock - State of Conservation by Period of Construction (ISTAT, 2011)


Building Energy Performance by Period of Construction

Rapporto annuale 978-88-8286-448-4 energetica degli edifici-CTI. (2023). 29. ISBN sulla certificazione Annualità 2023. p. 7 ಹ Source: ENEA

Urban Building Energy Modelling (UBEM)


- UBEM for the large-scale energy and environmental performance assessment.
- UBEM as a support tool for public administrations, energy agencies, and urban planners to encourage the development of national building renovation plans.

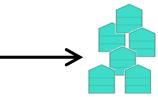
How to develop a UBEM? Time Very detailed consuming model Accurate Lack of data results High amount of real buildings to be assessed! Need of expert modellers Tools not easily exploitable Not flexible model Source: Google Maps

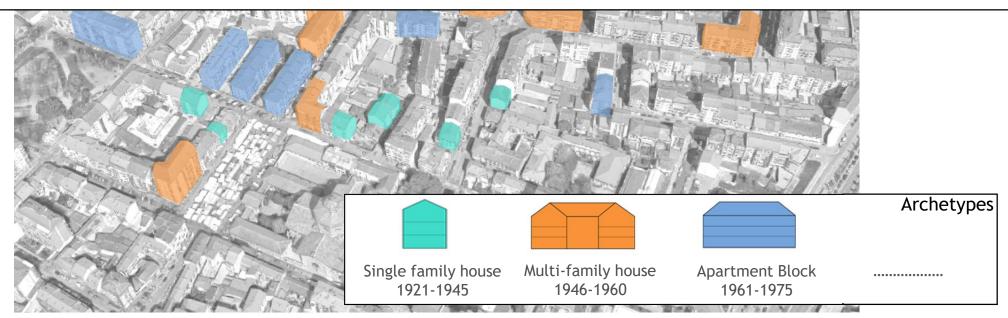
Reference building approach

EXAMPLE

Source: Google Maps

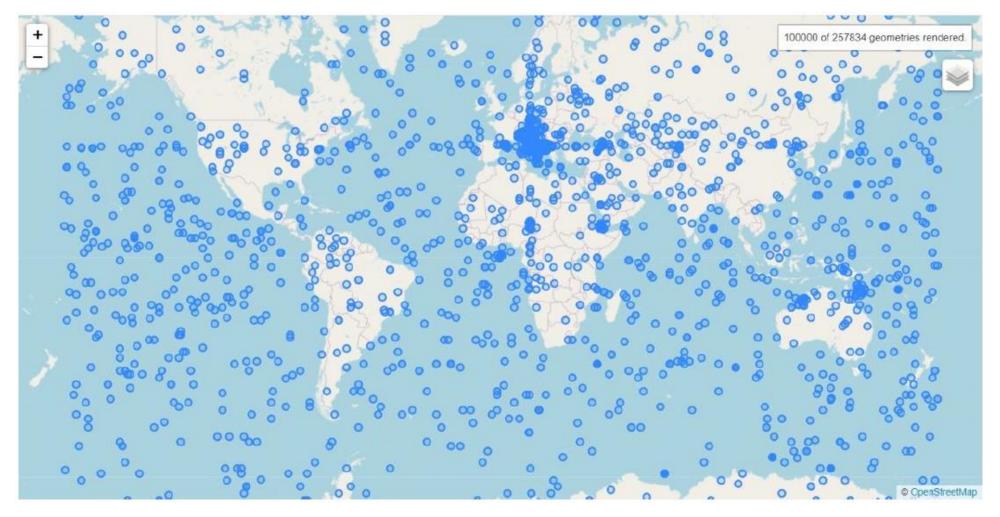
Bottom-up UBEM using archetypes




Building-type energy intensity

Numerical consistency of real buildings

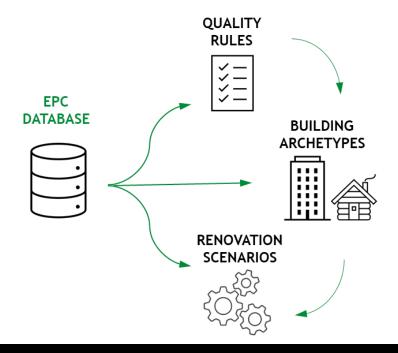
Building stock energy performance (baseline and future scenarios)

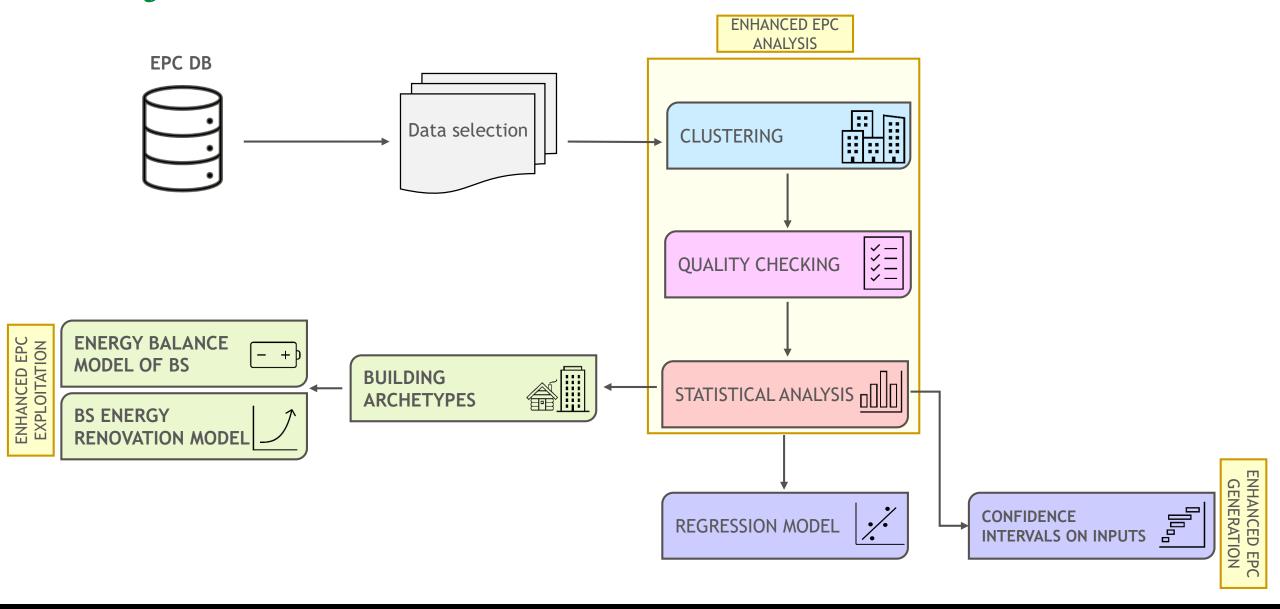

Source: Google Maps

Energy Performance Certificate (EPC) as a data source

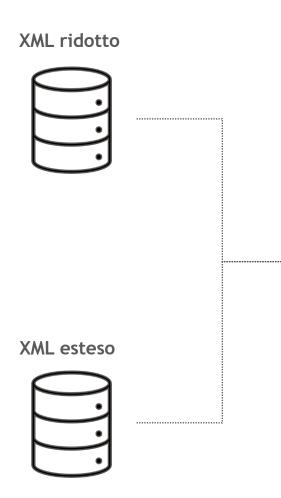
Quality of input data **EPC** data quality Methodology Energy assessors' and applied expertise tools

Data quality issue

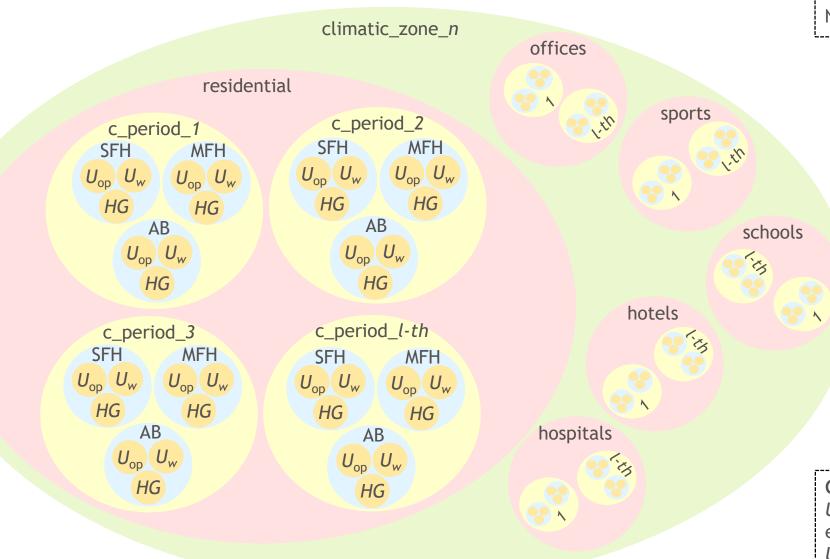

Why is data quality important?

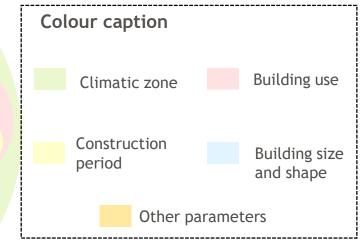

Source: ENEA & CTI. (2023). Rapporto annuale sulla certificazione energetica degli edifici- Annualità 2023. p. 69. ISBN 978-88-8286-448-4.

TIMEPAC objectives


- To check and improve quality of the EPC data,
- to exploit the EPCs to carry out **energy balances** of the building stock using **representative buildings** (archetypes), and
- to provide targeted stakeholders with a methodology to perform reliable refurbishment scenario analyses of their building stocks.

Project work-flow


EPC data selection


Data needed

	Assessed object	Application type	EPC ID code	Building city
	Building category	No. of building units	Building typology	Building constructive typology
	Year of construction	Year of last renovation	No. of floor	Climatic region
	Heating degree days	Compactness ratio	Thermally conditioned floor area	Thermally conditioned gross volume
	Thermal envelope area	Mean overall heat transfer coefficient by thermal transmission	Opaque thermal envelope area	Transparent thermal envelope area
	Mean <i>U</i> -value of the total building envelope	Mean <i>U</i> -value of opaque building envelope	Mean <i>U</i> -value of transparent building envelope	Energy services
•	TBS type of generator per energy service	TBS energy carrier per energy service	TBS mean global seasonal efficiency per energy service	TBS subsystems efficiency per heating system
	<i>EP</i> _{H,nd}	EP _{C,nd}	EP _{W,nd}	EP _{H,nren}
- -	EP _{C,nren}	EP _{W,nren}	<i>EP</i> _{gl,nren}	<i>EP</i> _{gl,ren}
	<i>EP</i> _{gl,nren} per energy service	Delivered energy per energy carrier	Recommended EEM(s)	EP _{gl,nren} of recommended EEM(s)
1				

EPC data clustering

No. of climatic zones: n = (1, ..., 6)No. of intended uses: m = (1, ..., 6)No. of constr. periods: l = (1, ..., L)No. of bldg size: o = (1, ..., 3)

Caption

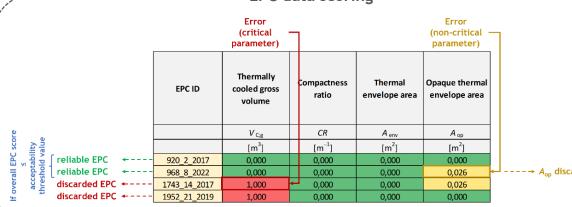
 U_{op} = Thermal trasmittance of the opaque element

 $U_{\rm w}$ = Thermal trasmittance of window

HG = Space heating generator type

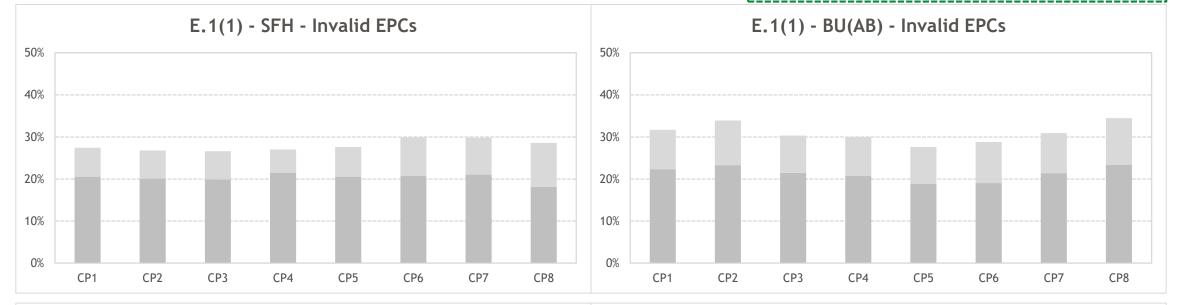
EPC data quality

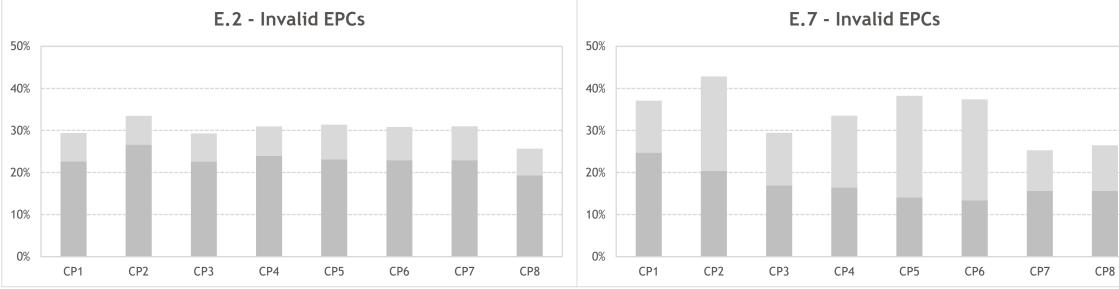
• The EPC data quality checking procedure provides the score attribution to parameters and values contained in the energy certificates. For each of the EPC data, a validity rule has been associated.



(*) This procedure draws inspiration from the X-tendo project (x-tendo.eu).

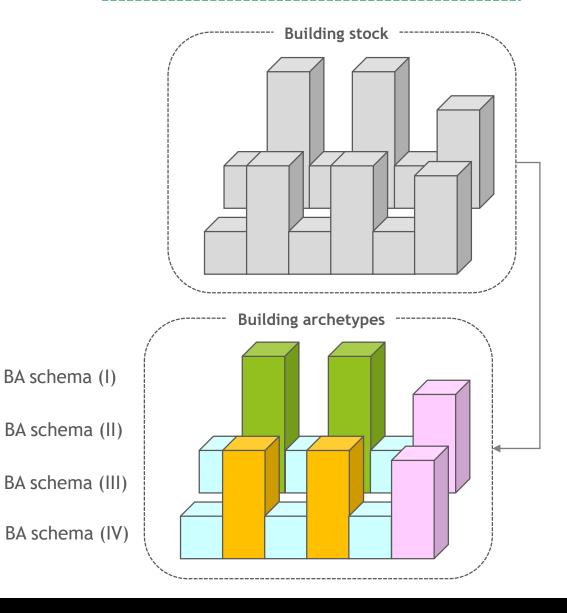
EPC data rules and scores


Data name (Critical parameter*)	Typology of rules	Rule	Respecte d rule (score)	Unrespec ted rule (score)
Assessed object	D	string not null	0,000	1/(n-m)
Application type	D	string not null	0,000	1/(n-m)
EPC ID code*	D	string not null	0,000	1,000
Building city	D	string not null	0,000	1/(n-m)
Number of building units	D	string not null <i>or</i> integer ≥ 0	0,000	1/(n - m)
Building typology	D	string not null	0,000	1/(n-m)
Building construction typology	D	string not null	0,000	1/(n-m)
Building category	D	string not null	0,000	1,000
Year of construction	D, P	integer > 0	0,000	1,000


EPC data scoring

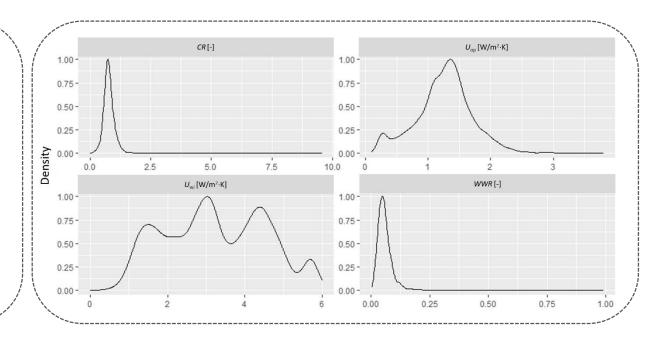
EPC data quality

The procedure has been applied to the **Piedmont Region EPC database (SIPEE)**.



Building archetypes (BAs)

Example of BA schema


• •	DIEMONTE DEGION EDG	DATABASE	E DEC CINC	LE 600			
	PIEMONTE REGION EPC I	DATABASE -	E_KES_SING	LE_CP8			
	Data	Symbol	Unit of measure	Median	$(Q_3 - Q_2)$	$(Q_2 - Q_1)$	
	Compactness ratio	CR	m ⁻¹	0,788	0,111	0,102	
try	Thermally heated gross volume	V _{H;g}	m ³	534	179	117	
Geometry	Thermally heated floor area	A _{H;use;ztc}	m ²	130	43	28	
Ge	Transparent thermal envelope area on thermal envelope area	A _{wi} /A _{env}	%	5%	1%	1%	
lope	Mean thermal transmittance of opaque building envelope	U _{op}	W/(m²⋅K)	0,338	0,244	0,097	
Envelope	Mean thermal transmittance of transparent building envelope	U_{vri}	W/(m²⋅K)	1,570	0,498	0,280	
	Energy carrier per space heating	Natural gas = 78%; solid biomass = 7%; others = 15% (of the analysed sample)					
system	Energy carrier per space cooling	Electricity = 100% (of the analysed sample)					
uilding	Energy carrier per domestic hot water	Natural gas = 72%; electricity = 17%; others = 11% (of the analysed sample)					
Technical building system	Mean seasonal efficiency of the heating generation sub-system (natural gas)	$\eta_{H;gn}$	_	0,917	0,093	0,127	
Tech	Mean seasonal efficiency of the heating generation sub-system (solid biomass)	$\eta_{H;gn}$	-	0,750	0,186	0,290	
	Utilisation energy efficiency	η _{H;u}	_	0,875	0,048	0,065	

The procedure has been applied to the **Piedmont Region EPC database (SIPEE).**

- Plausible values for the main input data from the regional EPC databases that affect the energy performance of buildings.
- Set of controls on EPC input data to increase **reliability** and **representativeness**.

	U	op [W/(m ² ·K)]		U _{wi} [W/(m²⋅K)]			
SFH	Mean ± SD	95%	% CI	Mean ± SD	95% CI		
		LL	UL		LL	UL	
CP1	1,259 ± 0,45	1,250	1,268	3,234 ± 1,30	3,209	3,260	
CP2	1,243 ± 0,45	1,225	1,261	3,209 ± 1,25	3,159	3,258	
CP3	1,216 ± 0,44	1,205	1,227	3,170 ± 1,30	3,138	3,203	
CP4	1,114 ± 0,45	1,104	1,125	2,960 ± 1,29	2,929	2,991	
CP5	1,019 ± 0,42	1,009	1,030	2,872 ± 1,32	2,840	2,905	
CP6	0,970 ± 0,38	0,959	0,981	2,678 ± 1,14	2,645	2,712	
CP7	0,830 ± 0,33	0,820	0,840	2,390 ± 0,81	2,366	2,415	
CP8	0,447 ± 0,30	0,439	0,456	1,749 ± 0,68	1,730	1,769	

If you would like more information, please visit www.timepac.eu or contact us at

ilaria.ballarini@polito.it

Thanks for your attention!

