TIMEPA©

FINAL CONFERENCE

Barcelona, 4 October 2024 ICAEN – Catalan Institute for Energy

Local Levelised Cost of Energy Enhancing SRI & EPC with financial indicators - With a view of supporting policy making

Rolf Bastiaanssen

Bax & Company - Innovation Consultants

Integrating LLCOE in practice

Certifiers

- No extra effort, training
- Needs an external model
 - As in current practice
 - Proposal measures → cost/benefit

Decision-making

Mission-oriented markets need a long-term view and systems thinking

Tenants, and Building Owners

- Respond to short term signals

Policy Makers

- Long-term outlook
- Implicit market-making
 - Shape support programmes
 - Regulation

Challenge: consumer-oriented financial guidance?

EPC and SRI have a consumer focus....

- EPC recommendation simple improvement propositions
- Building-related, but focus on owners, tenants

But EPC (and SRI?) also inform policy

- National, regional policies, programmes and instruments
- Real estate owners and financiers
- Valuation practices

At what level do certificates have most impact?

What financial indicator is most fitting?

TIMEPA©

What is new: building – grid interaction and convergence

- Deep renovation programmes emerging
- Decentral smart systems become available
 - VRE generation
 - Storage systems
 - Flexibility services
- Smart systems are complex
 - Integrated (not stand-alone improvements)
 - Have value potential
 - Have dynamic outcomes
- What is a fitting financial indicator?
 - CAPEX/payback
 - ROI
 - Operating costs
 - ...

TIMEPA®

Proposition: Local Levelised Cost of Energy - €/kWh

Metric

- LCOE used to assess and compare alternative methods of energy production

- Fits energy-producing buildings
- Fits long term thinking
 - Buildings: Societal benefit v Owner/investor benefit v Tenant benefit

Localisation

- Energy cost/prices are mostly systems costs
 - Roughly unified at national levels
- Consumer choice tends to cheapest system
 - Among similar options (eg; green, effort)
 - In decentral markets this may lead to diverging solutions at building, district, regional level –
- Diverging System and €/kWh per location

De Clerq, 2018

Case study: applying LLCOE in the Netherlands

Case study: applying LLCOE in the Netherlands

Building type		Mul	ti-family	resi	dential		Consumption		167.92	6 k	٢W	n/y
Location		Ame	ersfoort, t	he I	Netherlan	ls	Electricity price		0,14	94 €	٤/k١	Wh
Scenario 1: grid-provided energ	SY						Scenario 2: PV + Storage	+ imbalance tra	ding + gri	id co	ons	umption
		Per	year	Pe	r 15 year			F	Per year	1	15 y	/ear
Grid Connection (kVa)	110	€	6.633	€	99.489		Grid Connection (kVa)	110	€ 6.63	3	€	99.489
Consumption (kWh)	167.926	€	25.088	€	376.322							
							PV system	100kWP			€	66.000
							BESS ssytem	80kW / 160kW	/h		€ 3	100.000
							Maintenance, insurance		€ 1.50	0	€	22.500
							Production PV (kWh)	85.000				
							Net demand grid (kWh)	82.926	€ 12.3	89	€	185.837
							Imbalance trade revenue		-€ 17.5	63	-€	263.445
							Imbalance trade cost		€ 7.3	46	€	110.190
15-year Total cost	2.518.890			€	475.811		15-year Total cost	2.518.890	k۷	/h	€	320.571
LLCOF (kWb)				£	0.189		LLCOF (kWb)				£	0.127

Scenario 2

A smart system including REG, RES, and providing flexibility services

ΰk

- €200k Savings
- €150k Revenue •

LLCOE

- Scenario 1: €0,189/kWh
- Scenario 2: €0,127/kWh •

FINAL CONFERENCE | 4 October 2024

0,127

Proposition: Local Levelised Cost of Energy - €/kWh

LCOE

- For Systems (Ueckerdt, 2013)
 - Including Integration (TSO, DSO systems and Grid balancing)
- For VRE (IEA, EIA)
 - Including Integration (TSO, DSO systems and Grid balancing)
 - This may vary per actor or region
- In decentral systems variety is higher
- Cost of land
- National, regional flex markets and revenues
- Labour costs (€/hr)
 - Preparation cost (Prep-ex)
 - Management costs (LEC/LES models)
 - Installation and maintenance

Phase	Services	Value added	Per-member Cost-benefit	Comm Potential	
Prep	REC governance	Stakeholder representation	-€2k	Low	
	Feasibility study, process	Technical leadership	-€0,4k	High	
	Feasibility study, analysis	Accurate, fast design tools	-€0,1k	High	
Build	REC installation	Technical installation	-€3k	High	
Oper	REC governance	Stakeholder representation	-€1k	Low	
	Local client engagement	Daily client support	- €4k	Medium	
	Energy trading	Local balancing, trading	+€2k	High	
	Settlement	Settle micro transactions	+€2k	High	

PREPEX Underestimated

TIMEPA®

Insights for building owners and policy makers

- In decentral systems, LCOE varies locally
- Benchmarking across system alternatives
 - Central grid v decentral system v ...
 - Grid parity as the consumer benchmark
 - Lowest LLCOE as policy goal
 - max societal benefit
- Those who can, invest for lowest LLCOE
 - This increasingly tends to LES
 - NZEB will rely less on the grid, contribute less
- Those who can't will carry high system cost
 - TSO, DSO costs per remaining users go up
- EU Energy price is €0,28/kWh (1x, grid parity)
- Lowest LES LLCOE is €0,15/kWh, or 0,5X

Local Levelised Cost of Energy

Limitations and improvements

Uncertainty

• EPC is an extremely impactful indicator, while there are significant differences with actual energy use

Methodology

- Normalisation
 - Time linked to economic/technical lifetime
 - Revenues
- Allowance for labour costs

Further research – a bit of R&D&I populism

Research to steer policy, policy to make markets

Macro level: Policy strategy

- Mission-Oriented Innovation needs targets. Such as min €/kWh
- Centralized (corporate) versus Decentralised (families, SME)
 - One of the largest wealth transfer options available
 - Varying LLCOE will have <u>very significant</u> social implications.

Meso level

- Reframe indicators in societal value
- Improve definition and calculation methods
 - Falko Ueckerdt, PIK Potsdam
- Economic analysis across regions, building types
 - Quantitative, Multi-level

Micro level

- Improve calculation method (flexibility)
- Demonstrate use, and real impact

TIMEPA®

TIMEPA®

FINAL CONFERENCE

Barcelona, 4 October 2024 ICAEN – Catalan Institute for Energy

If you would like further information, please contact us at

r.bastiaanssen@baxcompany.com