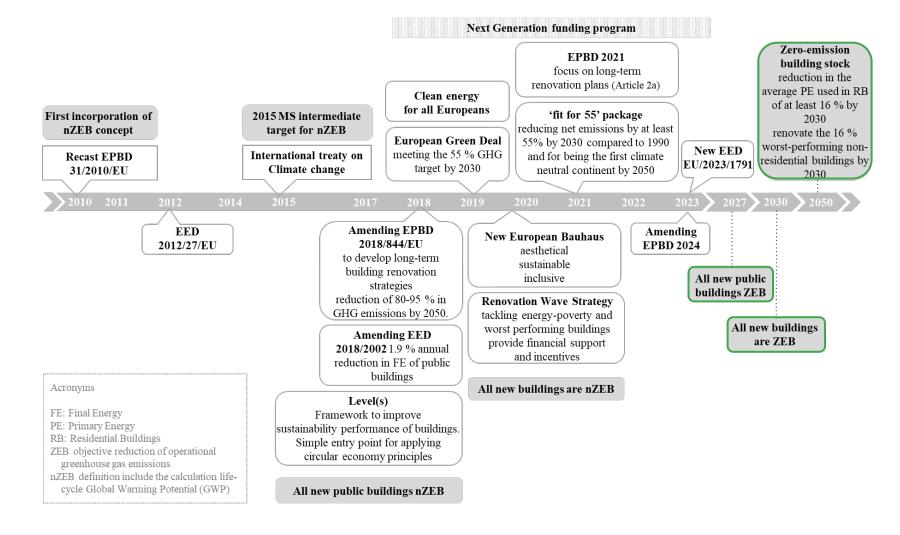


Towards Sustainable Construction for Deep Renovation: a comprehensive analysis of the transition from cost-optimal methodology to multi-objective methodology

David Masip, Eva Crespo

Department of Architectural Technology ETSAB-UPC



Index

- 1. Introduction
- 2. Methodology
- 3. Case study and results
- 4. Demonstrative assessment of a multi-objective approach
- 5. Discussion and conclusions

Introduction

Introduction - Concept clarification

Confusion among the sector between different concepts:

Energy

Methodologies for renovation

Building classification

- Demand
- Consume
- CO2 emissions

- Cost-optimal
- Cost-effectiveness

- nZEB
- ZEB
- LC-Nzeb
- Deep retrofit
- Deep renovation
- PEB

Methodology

PHASE 2 PHASE 1 1.1. Opportunity identification 3. New paradigms 1.2. Action and assessment

Current building stock evaluation according its energy performance:

- Demand Envelope
- · Consume Facilities
- CO₂ emissions energy source

Optimisation of the renovation strategies thorough:

- **Energy in operational** phase
- CO₂ Impacts in the whole Lifecycle
- Efficient use of resources and les waste

Literature review

More sustainable construction demand through:

- More society commitment
- **Economical and Social** impact

LCA - LCC - SLCA

4. Conclusions

Las tendencias de la literatura review muestran diferentes csos de incorporación de estos tres conceptos en la toma de decisiones

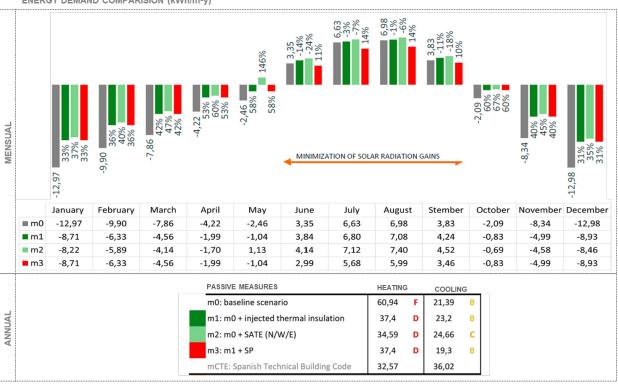
Como clave para reactivar la rehabilitación a nivel masivo

COST OPTIMAL - EBPD

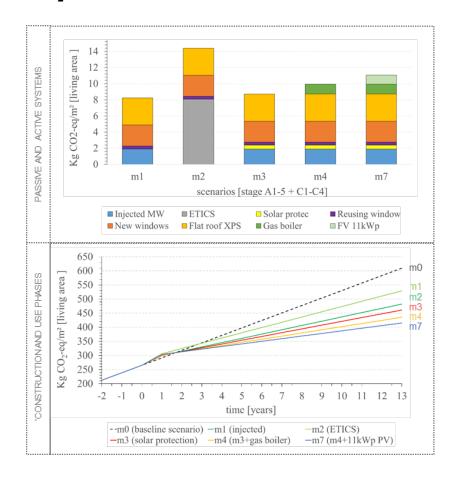
MULTI OBJECTIVE

Reference: Architectural and Environmental Strategies Towards a Cost-Optimal Deep Energy Retrofit for Mediterranean Public High Schools. Authors: Eva Crespo, Cossima Cornadó, Oriol París

Case study and results


Case study and results

	DEMAND		FINAL ENERGY		EWABLE ENERGY	ONS		SS	G TION	
	heating	cooling	electricity	GLP/DIESEL	NON-RENEWABLE PRIMARY ENERGY	CO ₂ EMISSIONS	Στοται	ENERGY AWARENESS	BUILDING DETERIORATION LEVEL	ΣτοτΑι
1. Agramunt				1			1	1	1	3
2. Pobla de Segur	3			1	1		5	1	1	7
3. Lleida			0,5			2,5	3	1	1	5
4. Borges Blanques		0,5					0,5	1	1	2,5
5. Girona			0,5				0,5	1	1	2,5
6. Figueres	3			1	1	2,5	7,5	1	1	9,5
7. Olot							0	1	1	2
8. Puigcerdà		0,5					0,5	1	1	2,5
	3,5			2,	5	2,5	8,5	1	1	10,5


Case study and results - Hypothesis

CO₂ IMPACT OPERATIONAL PHASE

ENERGY DEMAND COMPARISION (kWh/m²y)

CO₂ IMPACTS OF THE WHOLE LIFE

Case study and results - Actions

SAMPLING METHODOLOGY TO RAISE A DEEP ENERGY RETROFIT IN MEDITERRANEAN SCHOOLS

TOOLKIT FOR PRIORITIZATION THE SCHOOL BUILDING

OF BASELINE SCENARIO

STRATEGY TO RAISE A DEEP ENERGY RETROFIT WITH ENVIRONMENTAL CONSIDERATIONS

MODELING nZEB DEEP
RETROFIT MEASURES

RETROFIT MEASURES
SCENARIOS PROPOSAL

uncovering the average return of each measure

RANKING OF BUILDING

ASSESSMENT

SAMPLING METHODOLOGY

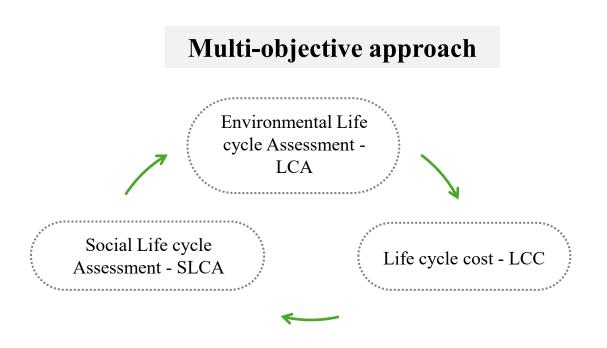
•Energy demand

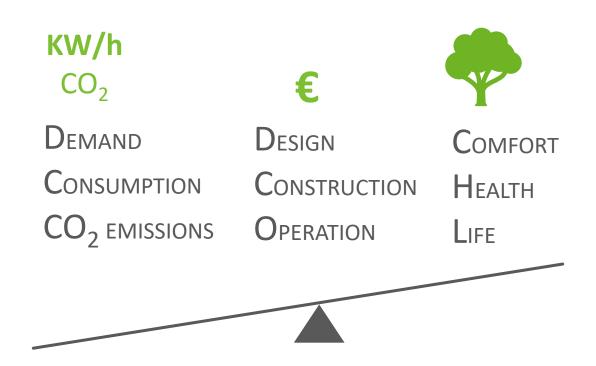
- •Non renewable Final energy
- •CO₂ emissions
- Energy awareness
- Building deterioration level
- Constructive awareness

ENERGY PERFORMANCE INFORMATION

INSPECTION AND EVALUATION

- Visual data collection
- •Embodied carbon emissions
- ·Circularity opportunities.
- Energy bills
- Energy, lighting and ventilation modelling (HULC, Design Builder and Dialux)


ENERGY PERFORMANCE IMPROVEMENT


- Minimizing energy demandPromoting high energy
- •Promoting high energy efficiency of facilities
- •Adding local renewable energy sources

ENERGY AND ENVIRONMENTAL PERFORMANCE COST-OPTIMIZATION

- •Energy (kWh/m²y), CO_{2,} €
- Payback Certification level (BEDEC and CYPE)
- Considering PAREER funding
- •Environmental impact (EPD® System y DAPcons®, BEDEC)

Demonstrative assessment of the multi-objective approach

Discussion and conclusion

 Identifying and unifying the main guidelines, as well as established concepts and their scope, into a single framework is necessary

2. Going beyond the operational phase towards a whole life cycle. Enhanced EPC as with more data is required.

3. A transition towards a more sustainable Europe

"Initiatives like Zero Energy Renovation Kits are crucial for propelling the Renovation Wave. Thus, achieving decarbonization requires two interconnected strategies: rigorous analysis of passive strategies for zero operational emissions and adopting a circular economy to attain zero embodied carbon emissions and waste, supported by unified criteria and methodologies under a regulatory EU framework"

If you would like further information, please contact us at

david.masip.vila@upc.edu

eva.crespo@upc.edu